

Name: \qquad ()

Chem!stry class:

\qquad
Date: \qquad / | \qquad

Mole Calculations for Reversible Reactions

1. Nitrosyl chloride, NOCl , decomposes on heating according to the equation given below:

$$
\mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})
$$

When $225 \mathrm{~cm}^{3}$ of nitrosyl chloride was placed in a closed container at constant pressure, and heated to a constant temperature, it was found that nitrogen monoxide made up 20% of the equilibrium mixture.

What is the total volume of gases in the equilibrium mixture at the temperature of the reaction?
2. Hydrogen, $\mathrm{H}_{2}(\mathrm{~g})$, can be obtained from methane, $\mathrm{CH}_{4}(\mathrm{~g})$, by partial oxidation with steam, $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, as follows:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

When $100 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{4}(\mathrm{~g})$ was reacted with $100 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in a closed container at constant pressure, and heated to a constant temperature, it was found that carbon monoxide, $\mathrm{CO}(\mathrm{g})$, made up 20% of the equilibrium mixture.
Taking the decrease in volume of $\mathrm{CH}_{4}(\mathrm{~g})$ to be $x \mathrm{~cm}^{3}$, calculate the volume of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ in the equilibrium mixture.

	$\mathrm{CH}_{4}(\mathrm{~g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2}(\mathrm{~g})$
Initial volume $/ \mathrm{cm}^{3}$	100	100	0	0
Final volume $/ \mathrm{cm}^{3}$	$100-x$	$?$	$?$	$?$

- Scan the QR code below to view the answers to this assignment.

http://www.chemist.sg/ammonia equilibrium/equilibrium mole calc ans.pdf

