

Name: \qquad

Chem!stry
 Class:

\qquad
Date: \qquad
\qquad /

Chemical Equilibrium

Question One:

Calculate the equilibrium constant, K_{c}, for the esterification reaction given below:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

Data: 1.00 mol of ethanoic acid was allowed to react with 4.00 mol of ethanol. At equilibrium, the amount of ethanoic acid remaining was 0.07 mol .

Question Two:

One mole of hydrogen gas and one mole of iodine vapour were mixed together and allowed to reach equilibrium at 300 K and a pressure of 1 atm :

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

Data: The amount of hydrogen iodide present at equilibrium was found to be 1.5 mol . Calculate the equilibrium constant, K_{p}, at 300 K .

Question Three:

Phosphorus(V) chloride dissociates at high temperatures according to the following balanced chemical equation:

$$
\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

Data: The system reaches equilibrium at a certain temperature when 39% of a sample of PCl_{5} has dissociated. The total equilibrium pressure is 2.00 atm . Calculate the value for the equilibrium constant, K_{p} :

Question Four:

Water gas is a mixture of hydrogen and carbon monoxide. It is made by passing steam over heated coke:

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{s})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})}
$$

It was used for many years as a commercial fuel.
a) This reaction was carried out at normal atmospheric pressure. Suggest, and explain, how increasing the pressure affects:
i) The time taken to reach equilibrium.
ii) The equilibrium yield of water gas.
b) Write the expression for the equilibrium constant, K_{p}, for this reaction.
c) During the conversion of steam into water gas, it was found that 30% of the steam had been reacted.
i) Calculate the partial pressure of each gas in the equilibrium mixture if the total pressure was 100 kPa .
ii) Calculate the value of K_{p} under these conditions. Include any units of K_{p} in your answer.

Question Five:

At a temperature of $107^{\circ} \mathrm{C}$ the reaction:

$$
\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}
$$

reaches equilibrium under a pressure of 1.59 MPa with 0.122 mol of carbon monoxide and 0.298 mol of hydrogen present at equilibrium in a vessel of volume $1.04 \mathrm{dm}^{3}$.
Use this data to answer the questions that follow:
a) Assuming ideal gas behaviour, determine the total number of moles of gas present. Hence, calculate the number of moles of methanol in the equilibrium mixture.
Note: $\mathrm{R}=3.814 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
b) Calculate the value of the equilibrium constant, K_{c}, for this reaction and state its units.
c) i) Write an expression for the equilibrium constant, K_{p}, for this equilibrium.
ii) Calculate the mole fraction of each of the three gases present in the equilibrium mixture.
iii) Calculate the partial pressures of all of the gases present in the equilibrium mixture.
iv) Calculate the value of the equilibrium constant, K_{p}, and state its units.

- Scan the QR code below for the answers to this assignment.

http://www.chemist.sg/ammonia equilibrium/equilibrium calc ans.pdf

