NANYANG		Name: (
Sirels High	Chem!stry	Class:	
		Date: / /	

Defining Rules for the Reactions of Acids

Part One – Definition of an Acid:

The following chemicals are all classified as acids:

Note: (aq) means aqueous – dissolved in water. H⁺ is the symbol for a hydrogen ion.

Name	Formula Equation for Acid Dissolving in Water to form an Acidic Solution		Basicity	Strong or Weak Acid
hydrochloric acid	HC <i>l</i>	$HCl \rightarrow H^{+}(aq) + Cl^{-}(aq)$	monobasic	strong
nitric acid	HNO ₃	HNO₃ → H⁺(aq) + NO₃⁻(aq)	monobasic	strong
sulfuric acid	H_2SO_4	$H_2SO_4 \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$	dibasic	strong
phosphoric acid	H ₃ PO ₄	H ₃ PO₄	tribasic	weak
ethanoic acid	CH₃COOH	CH₃COOH ≕ CH₃COO⁻(aq) + H⁺(aq)	monobasic	weak

 Study the equations for the chemicals dissolving in water to form acidic solutions and identify what they all have in common. Sodium hydrogen sulfate, formula NaHSO₄, dissolves in water according to the equation given below, but it is **not** classified as an acid:

 $NaHSO_4 \rightarrow Na^+(aq) + H^+(aq) + SO_4^{2-}(aq)$

Refer to the equations given in the table along with the equation for sodium hydrogen sulfate. Use this information to write a universal statement that defines what an acid is.

.....

2. Hydrochloric acid, nitric acid and ethanoic acid are *monobasic*, sulfuric acid is *dibasic* and phosphoric acid is *tribasic*. Study the equations for the chemicals dissolving in water to form acidic solutions once again. Use evidence from the equations to write statements that define what *monobasic*, *dibasic* and *tribasic* acids are.

3. Hydrochloric acid, nitric acid and sulfuric acid are classified as strong acids, while phosphoric acid and ethanoic acid are classified as weak acids. The → symbol means that the chemical change is complete, moving from left-to-right. The = symbol means that the chemical change is incomplete, as the reaction can move from left-to-right, and also from right-to-left. Use this information to write statements that define what strong and weak acids are.

Part Two – Reactions Between Acids and Metals:

In Chemistry, a *salt* is an ionic compound comprising of a positively charged ion (cation) and a negatively charged ion (anion). The positively charged ion is *nearly* always a metal (the exception being the ammonium ion, NH_4^+), and the negatively charge ion is always a non-metal. An example of a salt is magnesium chloride, formula $MgCl_2$, which comprises of a single positive magnesium ion, Mg^{2+} , and two negative chloride ions, Cl^- .

Study the three reactions of acids and metals given below:

 $\begin{array}{rl} Mg(s) \ + \ 2HC{\it l}(aq) \ \rightarrow \ MgC{\it l}_2(aq) \ + \ H_2(g) \\ \\ Zn(s) \ + \ 2HNO_3(aq) \ \rightarrow \ Zn(NO_3)_2(aq) \ + \ H_2(g) \\ \\ Fe(s) \ + \ H_2SO_4(aq) \ \rightarrow \ FeSO_4(aq) \ + \ H_2(g) \end{array}$

1. What do all of the reactions have in common? Use this information to write a universal statement that describes the reaction between an acid and a metal.

2. The reactivities of some metals are given in the table below. The non-metal, hydrogen, has been included for reference.

most reactive		least reactive			
potassium > sodium > calcium > magnesium > zinc > iron > [hydrogen] > copper > silver					

Predict which metals will **not** react with water. Give an explanation for your answer.

Part Three – Reactions Between Acids and Bases:

In Chemistry, *bases* are metal oxides and metal hydroxides. Examples include calcium oxide, formula CaO, and copper(II) hydroxide, formula Cu(OH)₂. If the base is soluble in water, then it can be further classified as an *alkali*.

Study the four reactions of acids and bases given below:

$$\begin{array}{rl} \mathsf{CaO}(\mathsf{s}) \ + \ 2\mathsf{HC}l(\mathsf{aq}) \ \rightarrow \ \mathsf{CaC}l_2(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(l) \\\\ \mathsf{Cu}(\mathsf{OH})_2(\mathsf{s}) \ + \ \mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) \ \rightarrow \ \mathsf{CuSO}_4(\mathsf{aq}) \ + \ 2\mathsf{H}_2\mathsf{O}(l) \\\\ \mathsf{MgO}(\mathsf{s}) \ + \ 2\mathsf{HNO}_3(\mathsf{aq}) \ \rightarrow \ \mathsf{Mg}(\mathsf{NO}_3)_2(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(l) \\\\ \mathsf{2NaOH}(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) \ \rightarrow \ \mathsf{Na}_2\mathsf{SO}_4(\mathsf{aq}) \ + \ 2\mathsf{H}_2\mathsf{O}(l) \end{array}$$

What do all of the reactions have in common? Use this information to write a universal statement that describes the reaction between an acid and a base.

Part Four – Reactions Between Acids and Carbonates:

Metal carbonates are compounds that contain a positively charged metal ion (cation) and a negatively charged carbonate ion (anion). A common example of a metal carbonate is chalk, whose chemical name is calcium carbonate, formula $CaCO_3$, which comprises of a single positive calcium ion, Ca^{2+} , and a single negative carbonate ion, CO_3^{2-} .

Study the three reactions of acids and metal carbonates given below:

 $\begin{aligned} &\mathsf{CaCO}_3(\mathsf{s}) \ + \ 2\mathsf{HC}l(\mathsf{aq}) \ \to \ \mathsf{CaC}l_2(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(l) \ + \ \mathsf{CO}_2(\mathsf{g}) \\ &\mathsf{K}_2\mathsf{CO}_3(\mathsf{s}) \ + \ \mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) \ \to \ \mathsf{K}_2\mathsf{SO}_4(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(l) \ + \ \mathsf{CO}_2(\mathsf{g}) \\ &\mathsf{PbCO}_3(\mathsf{s}) \ + \ 2\mathsf{HNO}_3(\mathsf{aq}) \ \to \ \mathsf{Pb}(\mathsf{NO}_3)_2(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(l) \ + \ \mathsf{CO}_2(\mathsf{g}) \end{aligned}$

What do all of the reactions have in common? Use this information to write a universal statement that describes the reaction between an acid and a metal carbonate.

• Scan the QR Code to view the answers to this assignment.

http://www.chemist.sg/acids/notes_acids_bases_salts/defining_rules_for_reactions_of_acids_ans.pdf