

Name: ()

Date: / /

Chem!stry Class:

Identification of Gases

Gas	Observations	
Ammonia, NH₃(g)	Colourless. Pungent. Damp red litmus paper turns blue. White fumes of NH ₄ C <i>l</i> (s) are observed when a glass rod dipped in concentrated hydrochloric acid is brought near the gas.	
Chlorine, CI ₂ (g)	Pale green-yellow. Pungent. Damp blue litmus paper turns red and is then bleached white.	
Water vapour, H₂O(g)	Colourless. Odourless. Anhydrous copper(II) sulfate paper changes colour from white to blue. Anhydrous cobalt(II) chloride paper changes colour from blue to pink.	
Sulphur dioxide, SO₂(g)	Colourless. Pungent. Acidified potassium manganate(VII) changes colour from purple to colourless.	
Carbon dioxide, CO₂(g)	Colourless. Odourless. White precipitate of CaCO ₃ (s) forms when the gas is bubbled into limewater. Note: Colourless solution of Ca(HCO ₃) ₂ (aq) formed if excess CO ₂ (g) is used.	
Oxygen, O₂(g)	Colourless. Odourless. Relights a glowing splint.	
Hydrogen, H₂(g)	Colourless. Odourless. Lighted splint is extinguished with a ' <i>pop</i> ' sound.	
Hydrogen chloride, HCI(g)	Colourless. Pungent. Damp blue litmus paper turns red. White fumes of NH ₄ C <i>l</i> (s) are observed when a glass rod dipped in aqueous ammonia is brought near the gas.	

Identification of Cations Part #1 – Test-tube Reactions

Cation	Using aqueous sodium hydroxide – NaOH(aq)	*Using aqueous ammonia – NH₃(aq)
Aluminium cation, A <i>l</i> ³+(aq)	White precipitate of A/(OH) ₃ (s) – soluble in excess NaOH(aq) giving a colourless solution.	White precipitate of $AI(OH)_3(s)$ – insoluble in excess $NH_3(aq)$.
Calcium cation, Ca²+(aq)	White precipitate of Ca(OH) ₂ (s) – insoluble in excess NaOH(aq).	No observed reaction. No precipitate formed.
Zinc cation, Zn²⁺(aq)	White precipitate of Zn(OH) ₂ (s) – soluble in excess NaOH(aq) giving a colourless solution.	White precipitate of $Zn(OH)_2(s)$ — soluble in excess $NH_3(aq)$ giving a colourless solution.
Lead(II) cation, Pb²⁺(aq)	White precipitate of Pb(OH) ₂ (s) – soluble in excess NaOH(aq) giving a colourless solution.	White precipitate of $Pb(OH)_2(s)$ — insoluble in excess $NH_3(aq)$.
lron(II) cation, Fe²+(aq)	Green precipitate of Fe(OH) ₂ (s) – insoluble in excess NaOH(aq). Turns red-brown on standing.	Green precipitate of $Fe(OH)_2(s)$ — insoluble in excess $NH_3(aq)$. Turns red-brown on standing.
lron(III) cation, Fe³+(aq)	Red-brown precipitate of Fe(OH) ₃ (s) – insoluble in excess NaOH(aq).	Red-brown precipitate of $Fe(OH)_3(s)$ — insoluble in excess $NH_3(aq)$.
Copper(II) cation, Cu²+(aq)	Blue precipitate of Cu(OH) ₂ (s) – insoluble in excess NaOH(aq).	Blue precipitate of $Cu(OH)_2(s)$ – soluble in excess $NH_3(aq)$ to give a dark blue solution.
Ammonium cation, NH₄⁺(aq)	No precipitate – ammonia gas produced on warming (turns damp red litmus paper blue).	Test not applicable.

*Note: In balanced chemical equations, aqueous ammonia should be written as NH₄OH(aq), not NH₃(aq).

Identification of Cations Part #2 – Flame Tests

Cation	Observation	
Sodium, Na⁺	Yellow / orange flame colour.	
Potassium, K⁺	Lilac flame colour.	
Calcium, Ca ²⁺	Brick red flame colour.	
Barium, Ba ²⁺	Apple green flame colour.	
Copper(II), Cu ²⁺	Green flame colour.	

Identification of Anions

Anion	Observation	
Carbonate, CO ₃ 2–(aq)	Add dilute acid. Effervescence is observed. Carbon dioxide gas is produced (carbon dioxide gas produces a white precipitate of CaCO ₃ (s) when bubbled through limewater).	
Chloride, C <i>l</i> ⁻(aq)	 Add dilute nitric acid followed by dilute aqueous silver nitrate. A white precipitate of AgC<i>l</i>(s), which is soluble in aqueous ammonia, but insoluble in dilute nitric acid, confirms chloride ions. Note: Pb(NO₃)₂ can be used in place of AgNO₃. A white precipitate of PbC<i>l</i>₂(s) will be observed. 	
lodide, I⁻(aq)	Add dilute nitric acid followed by dilute aqueous silver nitrate. A yellow precipitate of AgI(s), which is insoluble in aqueous ammonia and insoluble in dilute nitric acid confirms iodide ions. Note: Pb(NO ₃) ₂ can be used in place of AgNO ₃ . A yellow precipitate of PbI ₂ (s) will be observed.	
Nitrate, NO₃⁻(aq)	Add aqueous sodium hydroxide followed by A <i>l</i> (s) or Zn(s) and warm the mixture. Ammonia gas is produced (turns damp red litmus paper blue). Note: Should exclude NH4 ⁺ before testing for NO3 ⁻ .	
Sulfate, SO ₄ 2–(aq)	Add dilute nitric acid followed by dilute aqueous barium nitrate. Note: Aqueous barium chloride can be used for some tests. A white precipitate of BaSO ₄ (s) indicates the presence of sulfate ions.	

Effect of Heat on a Solid

	Observation	
Carbonate, CO ₃ ^{2–} (s)	Generally decompose on strong heating to produce the metal oxide and carbon dioxide gas. Carbon dioxide gas produces a white precipitate when bubbled through limewater.	
Group 1 nitrate, NO₃⁻(s)	Decompose on strong heating to produce the Group 1 metal nitrite (<i>e.g.</i> NaNO ₂) and oxygen gas. Oxygen gas will relight a glowing splint.	
Other nitrates, NO₃⁻(s)	Decompose on strong heating to produce metal or metal oxide, oxygen and nitrogen dioxide. Oxygen gas will relight a glowing splint. Nitrogen dioxide gas is reddish-brown in colour.	
Ammonium salt, NH₄⁺(s)	Sublime on heating. White solid will be observed on the cooler regions of the test-tube.	
Hydrated salt, X·H ₂ O(s)	Produces steam on strong heating. Steam will condense on the cooler regions of the test-tube. Water causes anhydrous cobalt(II) chloride paper to change colour from blue to pink.	

Test for Oxidising Agents and Reducing Agents

	Observation
Oxidising	Add an aqueous solution of FeSO4(aq). Colour changes from pale green to yellow / reddish-brown.
agent	Add an aqueous solution of KI(aq). Colour changes from colourless to brown – blue / black with starch.
Reducing	Add an acidified solution of KMnO4(aq). Colour changes from purple to colourless.
agent	Add an acidified solution of K ₂ Cr ₂ O ₇ (aq). Colour changes from orange to green.