

Chem!stry

Class: .		
Date:	1 1	

Name: (

Essential Notes on Organic Chemistry

Learning Outcomes:

Students should be able to:

Fuels and Crude Oil

- a) Name natural gas, mainly methane, and petroleum as sources of energy.
- **b)** Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation.
- **c)** Name the following fractions and state their uses:
 - i) Petrol (gasoline) as a fuel in cars.
 - ii) Naphtha as feedstock for the chemical industry.
 - iii) Paraffin (kerosene) as a fuel for heating and cooking and for aircraft engines.
 - iv) Diesel as a fuel for diesel engines.
 - v) Lubricating oils as lubricants and as sources of polishes and waxes.
 - vi) Bitumen for making road surfaces.
- **d)** State that the naphtha fraction from crude oil is the main source of hydrocarbons used as the feedstock for the production of a wide range of organic compounds.
- **e)** Describe the issues relating to the competing uses of oil as an energy source and as a chemical feedstock.

Alkanes

- a) Describe an homologous series as a group of compounds with a general formula, similar chemical properties and showing a gradation in physical properties as a result of increase in the size and mass of the molecules, *e.g.* melting and boiling points; viscosity; flammability.
- **b)** Describe the alkanes as a homologous series of saturated hydrocarbons with the general formula C_nH_{2n+2} .
- c) Draw the structures of branched and unbranched alkanes, C1 to C4, and name the unbranched alkanes, methane to butane.
- **d)** Define isomerism and identify isomers.
- e) Describe the properties of alkanes (exemplified by methane) as being generally unreactive except in terms of burning and substitution by chlorine.

Alkenes

- a) Describe the alkenes as a homologous series of unsaturated hydrocarbons with the general formula C_nH_{2n} .
- **b)** Draw the structures of branched and unbranched alkenes, C2 to C4, and name the unbranched alkenes, ethene to butene.
- c) Describe the manufacture of alkenes and hydrogen by cracking hydrocarbons and recognise that cracking is essential to match the demand for fractions containing smaller molecules from the refinery process.
- **d)** Describe the difference between saturated and unsaturated hydrocarbons from their molecular structures and by using aqueous bromine.
- **e)** Describe the properties of alkenes (exemplified by ethene) in terms of combustion, polymerisation and the addition reactions with bromine, steam and hydrogen.
- f) State the meaning of polyunsaturated when applied to food products.
- **g)** Describe the manufacture of margarine by the addition of hydrogen to unsaturated vegetable oils to form a solid product.

Alcohols

- a) Describe the alcohols as a homologous series containing the –OH group.
- **b)** Draw the structures of alcohols, C1 to C4, and name the unbranched alcohols, methanol to butanol.
- c) Describe the properties of alcohols in terms of combustion and oxidation to carboxylic acids.
- **d)** Describe the formation of ethanol by the catalysed addition of steam to ethene and by fermentation of glucose.
- **e)** State some uses of ethanol, *e.g.* as a solvent; as a fuel; as a constituent of alcoholic beverages.

Carboxylic Acids

- a) Describe the carboxylic acids as a homologous series containing the -CO₂H group.
- **b)** Draw the structures of carboxylic acids, methanoic acid to butanoic acid and name the unbranched acids, methanoic to butanoic acids.
- c) Describe the carboxylic acids as weak acids, reacting with carbonates, bases and some metals.
- **d)** Describe the formation of ethanoic acid by the oxidation of ethanol by atmospheric oxygen or acidified potassium dichromate(VI).
- **e)** Describe the reaction of a carboxylic acid with an alcohol to form an ester, *e.g.* ethyl ethanoate.
- f) State some commercial uses of esters, e.g. perfumes; flavourings; solvents.

Macromolecules

- a) Describe macromolecules as large molecules built up from small units, different macromolecules having different units and/or different linkages.
- **b)** Describe the formation of poly(ethene) as an example of addition polymerisation of ethene as the monomer.
- c) State some uses of poly(ethene) as a typical plastic, e.g. plastic bags; clingfilm.
- d) Deduce the structure of the polymer product from a given monomer and vice versa.
- **e)** Describe nylon, a polyamide, and *Terylene*, a polyester, as condensation polymers, the partial structure of nylon being represented as:

And the partial structure of Terylene as:

$$-\overset{0}{\text{c}} - \overset{0}{\text{c}} - \overset{$$

(Details of manufacture and mechanisms of these polymerisations are not required).

- **f)** State some typical uses of man-made fibres such as nylon and *Terylene*, *e.g.* clothing; curtain materials; fishing line; parachutes; sleeping bags.
- g) Describe the pollution problems caused by the disposal of non-biodegradable plastics.

1. In Chemistry, what is meant by the term "organic"?

• What is organic, and what is inorganic?

Organic:	Inorganic:

.

.....

2. What are the essential characteristics of an organic compound?

• "Ball-and-stick" model of the antibiotic penicillin.

3. Bonding in organic compounds.

- The dot-and-cross diagram for *ethane*, C₂H₆, is given below:
- In the space provided below, draw the dot-and-cross diagram for *ethene*, C₂H₄:

4. What properties of carbon make it so versatile?

C - C bond enthalpy = 348 kJ/mol C = C bond enthalpy = 612 kJ/mol

5. Homologous series.

Alcohols

Carboxylic acids

Alkanes:

Alkenes:

Carboxylic Acids:

6.	Namina	etraight_chain	alkanos
Ο.	maming	straight-chain	aikanes.

1) Methane

2) C_2H_6

Propane

4) C_4H_{10}

5) Pentane

C₆H₁₄

7) Heptane

8) C₈H₁₈

Nonane

10) $C_{10}H_{22}$ • Define the term *hydrocarbon*:

.....

.....

.....

• Define the term saturated:

• In the space provided below, give the full structural formulae of hexane:

7. Physical properties of the first ten straight-chain alkanes.

8. Naming alkenes.

• •	•	•	•		 	 •	 		-	•	•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•		 -	-		 •	-	 ٠.	•	 • •	•	٠.	 •	•	 	•	•		•	•	•	•	

9. Naming halogenoalkanes.

10. Naming alcohols.

H H-C-O	
H-C-O H-C-O	
H H H	
H-C-C-C-O H H H H	
Н	
H	
H H O H H-C-C-C-H I I I H H H	

11. Naming carboxylic acids.

H O H-C-C H O-H	
H O-H	
H H O	
H H O H-C-C-C H H O-H	
H H H O H-C-C-C-C I I I H H H O-H	
Н Н Н O—H	

12. Crude oil – formation of crude oil.

13. Crude oil – general properties of crude oil.

 An oil rig, used to access crude oil trapped below rocks under the sea bed.

14. Crude oil - uses.

• Some uses of crude oil, e.g. used to make plastics, petrol and diesel.

15. Crude oil – fractional distillation.

• Industrial fractional distillation of crude oil.

16. Crude oil - catalytic cracking of long-chain hydrocarbons. liquid alkane on mineral fibre aluminium oxide ethene very strong • Apparatus used to "crack" a long-chain hydrocarbon in the laboratory. Fossil fuels – environmental problems. • Consequence of an oil spillage at sea. 18. Fossil fuels - environmental problems.

19. Fossil fuels – environmental problems.

• Atmospheric pollution from burning fossil fuels.

20. Isomerism.

• Are the two molecules drawn below the same, or different?

• Are the two molecules drawn below the same, or different?

21. Isomerism.

• Are the two molecules drawn below the same, or different?

.....

.....

isomers of C₅H₁₂:	isomers of C ₆ H ₁₄ :								
23. Calculation of empirical formulae and mo	lecular formulae.								
a) Calculate the <i>empirical formula</i> of the hydrocarbon that has the following percentage composition:									
C = 85.7 % H = 14.3 %									
b) Given that the relative molecular mass of the hydrocarbon is 42.0, calculate the <i>molecular</i> formula of the hydrocarbon.									
$A_{\rm r}[{\rm C}] = 12.0 A_{\rm r}[{\rm H}] = 1.00$									
24. Calculation of empirical formulae and mo	lecular formulae.								
a) Calculate the <i>empirical formula</i> of the compound that has the following percentage composition:									
C = 60.0 % H = 13.4 % O = 26.6 %									
b) Given that the relative molecular mass of the compound is 60.0, calculate the <i>molecular</i> formula of the hydrocarbon.									
$A_r[C] = 12.0$ $A_r[H] = 1.00$ $A_r[O] = 16.0$									

• Give the full structural formulae of the *three* • Give the full structural formulae of the *five*

22. Isomerism.

25. Classification of reactions in organic chemistry - addition.

26. Classification of reactions in organic chemistry – elimination.

27. Classification of reactions in organic chemistry - substitution.

28. Reactions of the alkanes – complete combustion and incomplete combustion.

- Equation for complete combustion of C₂H₆:
- Equation for incomplete combustion of C₃H₈:
-
- Reagent **X** = anhydrous copper(II) sulfate.
 - Reagent **Y** = limewater.
-

.....

29. Reactions of the alkanes - substitution.

30. Reactions of the alkanes - cracking.

- Write a balanced chemical equation to show the cracking of dodecane, C₁₂H₂₆, to form an eight carbon alkane and four carbon alkene:
 - Write a balanced chemical equation to show the cracking of dodecane, C₁₂H₂₆, to form two identical alkenes and hydrogen:

31. Reactions of the alkenes - addition.

32. Reactions of the alkenes – addition of hydrogen (catalytic hydrogenation).

33. Reactions of the alkenes – manufacture of margarine.

34. Reactions of the alkenes – addition of a halogen.

temperature

$$C = C$$
 $C = C$
 $C = C$

room

35. Reactions of the alkenes – qualitative test for unsaturation.

36. Reactions of the alkenes - addition of a hydrogen halide.

37. Reactions of the alkenes - addition of water.

38. Alcohols – the fermentation of glucose to ethanol and carbon dioxide.

39. Alcohols – the fermentation of glucose to ethanol and carbon dioxide.

40. Alcohols – synthesis from alkenes.

41. Alcohols - combustion.

• Write the balanced chemical equation for the complete combustion of ethanol, C₂H₅OH:

Write the balanced chemical equation for the

complete combustion of propanol, C₃H₇OH:

• A spirit burner – used to burn liquid fuels, such as alcohols.

.....

42. Alcohols - dehydration.

• Alcohols can be dehydrated (removal of water) to form alkenes. This is achieved by warming the alcohol with either concentrated sulfuric acid or concentrated phosphoric acid.

43. Alcohols - oxidation.

• Alcohols can be oxidised to carboxylic acids. Typical oxidising agents are: a) acidified potassium manganate(VII) – KMnO₄ – changes colour from purple to colourless. **b)** acidified potassium dichromate(VI) – K₂Cr₂O₇ – changes colour from orange to green.

ethanol
$$H = \begin{pmatrix} H & H & \text{acidified} \\ H & H & \text{KMnO}_4 \end{pmatrix} + \begin{pmatrix} H & O \\ KMnO_4 \end{pmatrix} + \begin{pmatrix} H & O \\ H & H \end{pmatrix} + \begin{pmatrix} H & O \\ H & H \end{pmatrix} + \begin{pmatrix} H & O \\ H & O \end{pmatrix} + \begin{pmatrix} H$$

Alcohols - oxidation. 44.

• The ethanol in an alcoholic drink can react with oxygen in the air to form ethanoic acid.

 •••
 •••

45. Alcohols - Reaction with sodium.

Sodium reacting with ethanol.

	• •	•	•	• •	•	•	 •	•		 •	•		 •	•	• •	•	•			•	•	٠.	•	• •	•	• •	• •	•	• • •	• • •	 	• • •	• •	• •	• •	•	•	• • •	• •	•
							 																								 				٠.	٠.				
•	• •	•	•	• •	•	•	 •	•	•	 •	•	•	 •	•	• •	•	•	•	• •	•	•	• •	•	• •	•	• •	• •		• • •	• • •	 	• • •	 • •	• •	• •	•		• • •	• • •	•

46. Carboxylic acids – general properties.

• "Ball-and-stick" model of ethanoic acid.

47. Carboxylic acids – general reactions.

- Carboxylic Acid + Carbonate
 - Carboxylic Acid + Metal
- Carboxylic Acid + Alkali / Base
- Reaction between ethanoic acid and calcium carbonate.

calofalli carbonate.

48. Carboxylic acids – reaction with alcohols to form esters (esterification)

ethanoic acid

methanol

methyl ethanoate

water

propanoic acid

ethanol

49. Carboxylic acids - reaction with alcohols to form esters (esterification).

conc. H₂SO₄

50. Carboxylic acids - ester hydrolysis

51. Carboxylic acids – laboratory preparation of esters.

52. Carboxylic acids – properties and uses of esters.									
Esters are often used in perfumery.									
53. Polymers – introduction.									
 Bottles made of poly(propene). 									
54. Polymers – introduction.									
 Pellets of different polymers used as raw materials in the chemical industry. 									

55. Polymers - introduction.

56. Polymers - introduction.

58. Polymers - addition polymers.

• The balanced chemical equation for this reaction is written as: nC_2H_4 (g) \rightarrow (C_2H_4)_n (s)

59. Polymers - addition polymers.

60. Polymers - addition polymers.

61. Polymers – addition polymers.

• Give the full structural formula of the monomer used to make the polymer shown below.

62. Polymers - addition polymers.

• Give the full structural formula of the monomer used to make the polymer shown below.

63. Polymers – condensation polymers – polyesters.

• Terylene is a polyester used to make synthetic fibres.

64. Polymers – condensation polymers – formation of a polyester.

65. Polymers – condensation polymers – formation of a polyester.

66. Polymers – condensation polymers – hydrolysis of a polyester.

67. Polymers – condensation polymers – polyamides.

• Nylon is an example of a polyamide.

.....

68. Polymers – condensation polymers – formation of a polyamide.

polyamide

69. Polymers – condensation polymers – formation of a polyamide.

70. Polymers - condensation polymers - hydrolysis of a polyamide.

Polymers - environmental pollution.

• Most synthetic polymers are non-biodegradable.

Polymers – environmental pollution. **72**.

• Reduce, reuse, recycle.

Additional Notes

• Scan the QR code given below to view the answers to this assignment.

http://www.chemist.sg/organic_chem/worksheets/essential_notes_organic_chem_ans.pdf