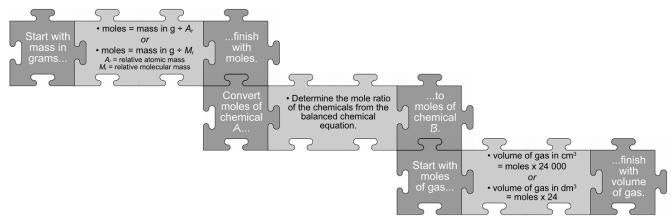


Jigsaw Puzzle – A Strategy for Sequencing the Essential Steps of a Mole Calculation

Instructions:

Cut-out the jigsaw puzzle pieces given below. When answering a question that requires you to complete a mole calculation, arrange the relevant jigsaw puzzle pieces in order to help you sequence the essential steps of the calculation. Examples are given on page 3 and page 4.

Example One


Question:

The balanced chemical equation for the reaction between calcium carbonate and nitric acid is given below:

 $CaCO_3(s) \ + \ 2HNO_3(aq) \ \rightarrow \ Ca(NO_3)_2(aq) \ + \ H_2O(l) \ + \ CO_2(g)$

Calculate the volume of carbon dioxide gas, in cm³, produced when 15.0 g of powdered calcium carbonate reacts with excess dilute nitric acid.

Answer:

Step 1:

• Calculate moles of $CaCO_3(s)$ used from the mass of $CaCO_3(s)$ in grams and the M_r of $CaCO_3(s)$:

moles of CaCO₃(s) = mass of CaCO₃(s) in grams \div *M*_r of CaCO₃(s)

 $M_{\rm r}$ of CaCO₃(s) = 40 + 12 + (3 × 16) = 100

 \therefore moles of CaCO₃(s) = 15.0 \div 100

= <u>0.150 mol</u>

Step 2:

• Determine the mole ratio between CaCO₃(s) and CO₂(g) from the balanced chemical equation. From the balanced chemical equation, 1 mol of CaCO₃(s) produces 1 mol of CO₂(g) \therefore 0.150 mol of CaCO₃(s) will produce $\frac{1}{1} \times 0.150 = 0.150$ mol of CO₂(g).

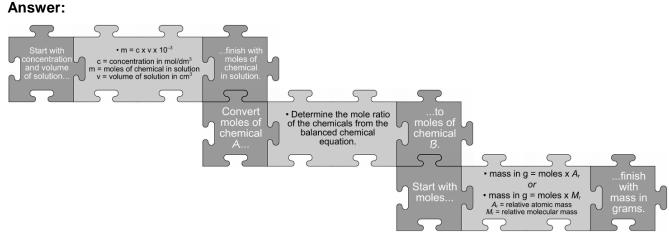
Step 3:

• Convert moles of CO₂(g) into a volume of CO₂(g) in cm³:

volume of CO₂(g) in cm^3 = moles of CO₂(g) × 24 000

= 0.150 × 24 000

= <u>3 600 cm³</u>


Example Two

Question:

The balanced chemical equation for the reaction between aqueous calcium chloride and aqueous silver nitrate is given below:

 $CaCl_2(aq) + 2AgNO_3(aq) \rightarrow Ca(NO_3)_2(aq) + 2AgCl(s)$

Calculate the mass in grams of AgCl(s) formed when 40.0 cm³ of 0.20 mol/dm³ CaCl₂(aq) are added to excess AgNO₃(aq).

Step 1:

• Calculate moles of CaCl₂(aq) used from the concentration and volume of CaCl₂(aq):

moles of CaCl₂(aq) = concentration of CaCl₂(aq) in mol/dm³ × volume of CaCl₂(aq) in cm³ × 10⁻³ = $0.20 \times 40.0 \times 10^{-3}$

= <u>0.00800 mol</u>

Step 2:

 \bullet Determine the mole ratio between CaCl_2(aq) and AgCl(s) from the balanced chemical equation.

From the balanced chemical equation, 1 mol of $CaCl_2(aq)$ produces 2 mol of AgCl(s)

 \therefore 0.00800 mol of CaCl₂(aq) will produce $\frac{2}{1} \times 0.00800 = 0.0160 \text{ mol}$ of AgCl(s).

Step 3:

• Convert moles of AgCl(s) into a mass in grams:

mass of AgCl(s) in grams = moles of AgCl(s) \times *M*_r of AgCl(s)

 $M_{\rm r}$ of AgCl(s) = 108 + 35.5 = 143.5

- \therefore mass of AgCl(s) in grams = 0.0160 × 143.5
- = 2.296 g

= <u>2.30 g</u> (to 3 s.f.)