

Chem!s	try
--------	-----

Name: ()
Class:	
Date: / /	

<u>Self-Assessment Checklist for Mole Calculations – Assignment Ten</u>

Esse	Essential Formulae for Mole Calculations												
Mass in Grams	 Volume of Gas 	Concentration of Solution											
mass of solid in grams number of solid in grams number atomic mass (A _r) or relative molecular mass (M _r)	volume of gas* in cm³ or dm³ number of of moles 24 dm³ or 24 000 cm³ *at room temperature and pressure	number of moles conc. of solution in cm³ ×10-3											
moles = mass in g \div A_r or M_r mass in g = moles \times A_r or M_r A_r or M_r = mass in g \div moles	moles = vol. of gas in dm 3 ÷ 24.0 dm 3 vol. of gas in dm 3 = moles × 24.0 dm 3	moles = conc. \times (vol. \times 10 ⁻³) conc. = moles \div (vol. \times 10 ⁻³) vol. = moles \div (conc. \times 10 ⁻³)											

1. Mass in Grams or Kilograms

• Yes, I can do this:	• I'm almost there:	I need a little more help:
What mass of aluminium hyd	droxide, in kilograms, is prod	duced when 2.67 kg of aluminium
chloride is added to an exce	ss of water?	
$Al_2Cl_6(s)$	s) + $6H_2O(l) \rightarrow 2Al(OH)_3($	(s) + 6HC <i>l</i> (g)

2. Volume of Gas in Centimetres Cubed or Decimetres Cubed Yes, I can do this: ☐ I'm almost there: ☐ • I need a little more help: What volume of carbon dioxide gas, in decimetres cubed, is produced when 174 dm³ of butane burns in an excess of oxygen? Note: All volumes are measured at room temperature and pressure. $2C_4H_{10}(g) \ + \ 13O_2(g) \ \to \ 8CO_2(g) \ + \ 10H_2O(g)$ 3. Mass Concentration or Mole Concentration of Solution Yes, I can do this: • I'm almost there: • I need a little more help: 8.40 g of sodium hydroxide were dissolved in 250 cm³ of distilled water. 25.0 cm³ of this alkaline solution were pipetted into a conical flask and were found to react with exactly 28.00 cm³ of phosphoric acid, which was added from a burette. Using the mass of sodium hydroxide dissolved in 250 cm³, calculate the concentration of the sodium hydroxide solution that was used in mol/dm3, and hence calculate the concentration of the phosphoric acid. $3NaOH(aq) + H₃PO₄(aq) \rightarrow Na₃PO₄(aq) + 3H₂O(l)$

4.	Percentage Yield
	• Yes, I can do this: • I'm almost there: • I need a little more help: —
	38.0 cm³ of 0.900 mol/dm³ aqueous sodium chloride were added to excess aqueous lead(II) nitrate to form a precipitate of insoluble lead(II) chloride. Calculate the mass in grams of
	lead(II) chloride that should be produced by the reaction (the theoretical yield).
	$Pb(NO_3)_2(aq) + 2NaCl(aq) \rightarrow PbCl_2(s) + 2NaNO_3(aq)$
	After the lead(II) chloride had been washed with cold distilled water and dried, it was found
	that only 3.21 g of the salt had been produced (the experimental yield). Calculate the
	percentage yield of the lead(II) chloride produced by this experiment.
5.	Percentage Purity
	• Yes, I can do this: • I'm almost there: • I need a little more help: —
	A 3.00 g mixture of sodium carbonate and sodium chloride was dissolved in 25.0 cm ³ of
	distilled water. The sodium carbonate in the mixture was found to react with exactly 22.80 cm ³
	of 2.00 mol/dm³ hydrochloric acid by titration.
	$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$
	Calculate the moles of hydrochloric acid that reacted with then sodium carbonate, and hence
	calculate the mass of sodium carbonate in the mixture and then the percentage sodium
	carbonate in the mixture (percentage purity).

	• Yes, I can do this: • I'm almost there: • I need a little more help: —
	800 cm ³ of carbon dioxide gas were bubbled through 50.0 cm ³ of a 1.20 mol/dm ³ solution of sodium hydroxide.
	$2NaOH(aq) + CO_2(g) \rightarrow Na_2CO_3(aq) + H_2O(l)$
	By calculation, identify the limiting reagent and hence calculate the mass of sodium carbonate
	that could be produced by the reaction.
7.	Percentage Composition
	• Yes, I can do this: • I'm almost there: • I need a little more help:
	Iron tablets are prescribed by doctors to treat anaemia, which is a lack of haemoglobin in the blood. Different brands of iron tablets contain different iron(II) salts. One brand of iron tablet, weighing 0.800 g, contains hydrated iron(II) sulfate – FeSO ₄ ·7H ₂ O. A second brand of iron
	tablet, weighing 0.500 g, contains hydrated iron(II) oxalate – FeC ₂ O ₄ ·2H ₂ O. Calculate the
	percentage iron in each of the two hydrated salts, and hence calculate the mass of iron in
	each of the two different brands of tablets.

8. Molecular and Empirical Formulae

• Yes, I can do this:	• I'm almo	ost there:	• I need a I	ittle more help	: 🔲
An organic compound, with a	relative mol	ecular mass	of 401.6, was f	ound to have	the
following percentage compos	ition by mas	s:			
%C = 17	.93 %ŀ	H = 2.49	%Br = 79.58%	6	
Calculate the simple (empirication	al) formula c	of the compou	and the tru	e (molecular) f	ormula of
the compound.					
			• • • • • • • • • • • • • • • • • • • •		

• Scan the QR code below for the answers to this assignment.

http://www.chemist.sg/mole/assignments/mole_ten_ans.pdf

The Periodic Table of Elements

	18	2	Ξ	helium	4.0	10	Ne	neon	20.2	18	٩Ľ	argon	39.9	36	궃	krypton	83.8	24	×e	xenon	131.3	98	R	radon	1				
	17					6	ш	fluorine	19.0	17	ರ	chlorine	35.5	32	ğ	bromine	79.9	53	Н	iodine	126.9	85	Αţ	astatine	ı				
	16					8	0	oxygen	16.0	16	S	sulfur	32.1	34	Se	selenium	79.0	25	Це	tellurium	127.6	84	Ро	polonium	ı	116	^	livermorium	I
	15					2	z	nitrogen	14.0	15	ᇫ	phosphorus	31.0	33	As	arsenic	74.9	12	Sp	antimony	121.8	83	Ξ	bismuth	209.0				
	14					9	ပ	carbon	12.0	14	S	silicon	28.1	32	Ge	germanium	72.6	20	Sn	ţ	118.7	82	Pp	lead	207.2	114	丘	flerovium	ı
	13					2	Ф	boron	10.8	13	¥	aluminium	27.0	31	Ga	gallium	2.69	49	In	indium	114.8	81	F	thallium	204.4				
												•	12	30	Zu	zinc	65.4	48	ပ	cadmium	112.4	80	ΡĜ	mercury	200.6	112		copernicium	
												;	11	58	Cn	copper	63.5	47	Ag	silver	107.9	62	Αu	plog	197.0	111		ĕ	
Group												,	10	28	Ż	nickel	28.7	46	Pd	palladium	106.4	82	莅	platinum	195.1	110		darmstadtium	
Gre												c	6	22	රි	cobalt	58.9	45	몺	rhodium	102.9	22	'n	iridium	192.2	109	¥	meitnerium	I
		1	I	hydrogen	1.0							c	8	56	Pe	iron	55.8	44	Ru	ruthenium	101.1	92	SO	osmium	190.2	108	Hs	hassium	1
												1	/	52	Mn	manganese	54.9	43	٦ _C	technetium	ı	92	Re	rhenium	186.2	107	Bh	bohrium	I
						er	loc		nass				9	24	ပ်	chromium	52.0	42	Mo	molybdenum	6.36	74	≯					⊏	ı
					Key	atomic numbe	atomic symbo	name	ive atomic i			L	5	23	>	vanadium	6.03	14	g	niobium	92.9	23	Ξ	tantalum	180.9	105	<u>අ</u>	dubnium	1
						at	at		relat			•	4	77	i=	titanium	47.9	40	Zr	zirconium	91.2	7.5	Ξ	hafnium	178.5	104	₹	rutherfordium	I
												c	3	21	လွ	scandium	45.0	68	>	yttrium	88.9	12-29	lanthanoids			89–103	actinoids		
	2					4	Be	beryllium	9.0	12	Mg	magnesium	24.3	20	Ca	calcium	40.1	38	ഗ്	strontium	9.78	99	Ba	barium	137.3	88	Ra	radium	I
	1					က		lithium			Na				メ	potassium	39.1	37	Rb	rubidium	85.5	22	Cs	caesium	132.9	87	ъ́	francium	I

71	ŋ	lutetium	175.0	103	ت	lawrencium	ı
20	Yb	ytterbium	173.1	102	No	nobelium	ı
69	E	thulium	168.9	101	Md	mendelevium	I
89	ш	erbium	167.3	100	F	fermium	ı
29	운	holmium	164.9	66	Es	einsteinium	ı
99	ò	dysprosium	162.5	86	ర	californium	ı
65	Д	terbium	158.9	26	Ř	berkelium	ı
64	ВĠ	gadolinium	157.3	96	Cm	curium	1
63	Eu	europium	152.0	96	Am	americium	ı
	Sm			94	Pu	plutonium	ı
61	Pm	promethium	ı	93	Ν	neptunium	_
09	ΡN	neodymium	144.2	92)	uranium	238.0
29	P	praseodymium	140.9	91	Pa	protactinium	231.0
	Ce				드	thorium	232.0
22	Га	lanthanum	138.9	88	Ac	actinium	ı

lanthanoids

actinoids