NANYANC			Name: ()
Contraction of the second	a popole	Chem!stry	Class:	
· (S' H)	appor		Date: / /	

Thermometric Titration

Question:

A student investigated the rise in temperature when sulfuric acid was added to a solution containing 1.00 mol/dm³ sodium hydroxide, using the apparatus shown below:

20.0 cm³ of 1.00 mol/dm³ sodium hydroxide was poured into a beaker. The initial temperature (T_i) of both this solution and the sulfuric acid was 25.0°C.

Next, 5.0 cm³ of sulfuric acid was added to the aqueous sodium hydroxide from the burette. The reaction mixture was stirred gently and the maximum temperature (T_m) was taken. Following successive additions of 5.0 cm³ volumes of sulfuric acid from the burette, further temperature readings (T_m) were taken.

The diagrams below show parts of the thermometer stem giving the temperature after the addition of 5.0, 15.0 and 25.0 cm³ of sulfuric acid.

a) i) Use the diagrams to complete the following table of results.

[1]

ii) Calculate the change in temperature $(T_m - T_i)$ for each 5.0 cm³ volume of sulfuric acid added to the aqueous sodium hydroxide. Complete this on the table of results.

[1]

Volume of Sulfuric Acid / cm ³	Maximum Temperature <i>T</i> m / °C	Change in Temperature <i>T</i> _m − <i>T</i> _i / °C
5.0		
10.0	29.0	
15.0		
20.0	33.0	
25.0		
30.0	29.0	
35.0	26.0	

b) Plot the change in temperature, $T_m - T_i$ against volume of sulfuric acid on the grid below. Connect the points with **two** intersecting straight lines.

[3]

Use the graph to answer the following questions.

[1]

ii) Using your answer to c) ii), calculate the concentration of the sulfuric acid.

..... mol/dm³ [2]

e) Use the formula given below to calculate the enthalpy change of this reaction to three significant figures.

$$\label{eq:horizontal} \begin{split} \Delta H &= m \times c \times \Delta T \\ \Delta H &= \text{enthalpy change / J} \\ m &= \text{mass of solution / g} \\ c &= \text{specific heat capacity of water = 4.18 J/g/°C} \\ \Delta T \text{ change in temperature / °C} \\ \text{Note: Assume the density of the solution = 1.00 g/cm^3} \end{split}$$

.....J [3]

[Total: 17]

• Scan the QR Code below for the answers to this assignment.

http://www.chemist.sg/energy_changes/thermometric_titration_ans.pdf