

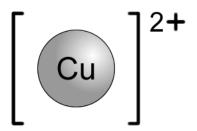
Name:	

Chem!stry class:

Date: / /

Revision Questions on Energy Changes / Redox / Electrolysis

ion 1:		
	ulphur in each one of the followin	a compounds
	·	-
_		
S ₄ O ₆ ²		
O.		
ne gas can be prepared in	the laboratory according to the fo	llowing chemical reaction.
	—	
$MnO_{2(s)}$	$+$ 4HC $l_{(aq)} \rightarrow MnCl_{2(aq)} + 2H_2O_0$	ı) + C <i>l</i> _{2(g)} ↑
	L	
•		hlorine and manganese at the
start and at the end of the	reaction.	
Element	Oxidation State at the Start of the Reaction	Oxidation State at the End of the Reaction
Manganese		
Chlorine		
What is the oxidising age	ent in this reaction, MnO ₂ or HCl?	? Explain your answer.
What is the reducing age	ent in this reaction, MnO_2 or HCl ?	Explain your answer.
	H ₂ S SO ₂ SO ₃ SO ₃ ²⁻ K ₂ SO ₄ S ₂ O ₃ ²⁻ S ₄ O ₆ ²⁻ ion 2: The gas can be prepared in the model of the model	ate the oxidation state of sulphur in each one of the following H_2S

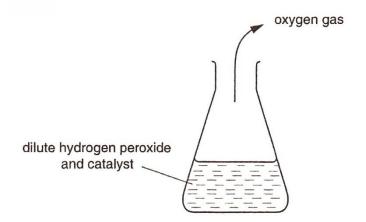

d)	State the qualitative test for chlorine gas.
e)	The chlorine gas that is produced by this reaction is damp. Which reagent should be used to dry the chlorine gas, anhydrous calcium oxide or concentrated sulphuric acid? Explain
	your answer.

Question 3:

The table below shows some information about two copper ores, *tenorite* and *cuprite*. Both contain copper oxide.

Ore	Formula of Copper Oxide in Ore	Oxidation Number of Copper	Percentage of Copper by Mass
Tenorite		+2	80.0%
Cuprite	Cu₂O		

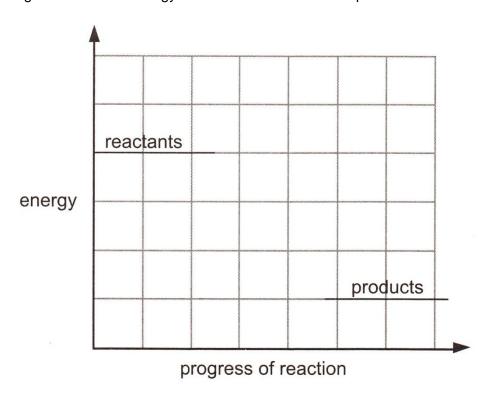
- i) What is the formula of the copper compound in tenorite?
 ii) What is the oxidation number of copper in cuprite, Cu₂O?
 iii) Calculate the percentage of copper by mass in cuprite, Cu₂O.
- **b)** Another ore of copper contains copper(II) sulfide. Complete the dot and cross diagram below for copper(II) sulphide showing the outer electrons only.



Copper Ion

Sulfide Ion

Question 4:


Dilute hydrogen peroxide decomposes to give oxygen and water when a catalyst is added.

a) Balance the equation for the reaction and complete the state symbols.

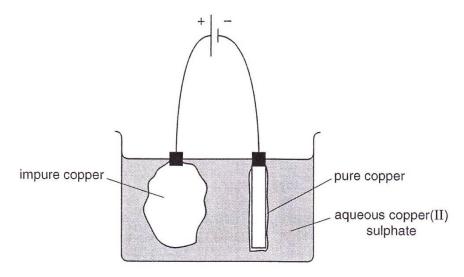
$$\dots H_2O_2$$
 () $\rightarrow \dots H_2O$ () + $\dots O_2$ ()

b) This diagram shows the energy levels of the reactants and products for this reaction.

Complete the diagram by:

- Drawing in the reaction pathway for the reaction.
- Showing the activation energy, *E*_a, by a single headed arrow.
- Showing the energy change for the reaction, ΔH , by a single headed arrow.

c)	The o	The overall energy change for the reaction is exothermic.								
	i)	Explain how the diagram shows this.								
	ii)	Explain, in terms of bond breaking and bond making, why this reaction is exothermic.								
Ques	tion 5:									
Car n	nanufac	cturers are de	eveloping fuel cells for us	se in cars.						
Fuel	cells pro	oduce electri	cal energy from the reac	tion between a fuel and	oxygen. Two possible					
			are hydrogen and metha	nol. The table below give	es some data about					
these	two fue	els.	Τ	T	T					
	Fu	uel	Melting Point / °C	Boiling Point / °C	Energy Change of Combustion kJ / mol					
	Hydrogen		-259	-252	256					
	Meth	nanol	- 97.7	64.5	715					
a)		•	alues for the energy char	_	ch fuel in kJ / mol.					
	i)	Calculate	the energy output for 1 g	of each fuel.						
	ii)	Use the va	alues that you have calcu	ulated, and information in	the table, to discuss the					
		advantage	es and disadvantages of	using each fuel in cars.						
	iii)	Hvdrogen	and methanol have diffe	rent effects on the enviro	onment when used as					
	fuels. Outline two environmental differences between the two fuels.									

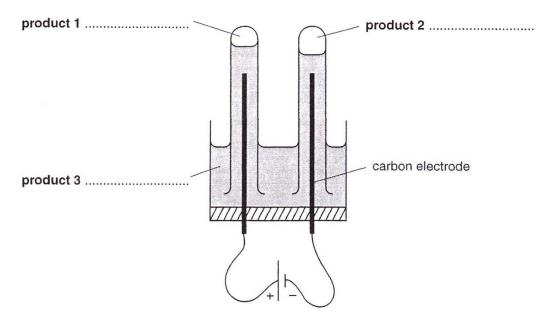

b) The energy output of a fuel cell can be shown using an energy profile diagram. Draw an energy profile diagram for the combustion of methanol. Your diagram should include labels for the reaction enthalpy change and activation energy.

Question 6:

				impurities.

a) Suggest how the carbon impurities get into the copper.

b) Copper for electrical wiring needs to have a very high purity.Pure copper is made by electrolysis, using aqueous copper(II) sulfate as an electrolyte.

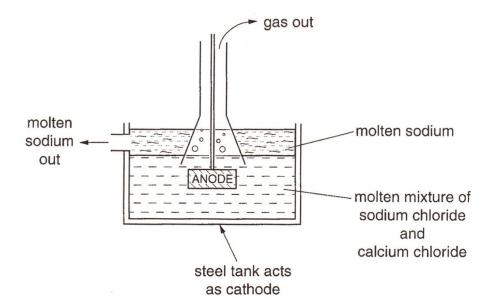


i)	Write equations, including state symbols, for the reactions at each electrode.
ii)	What happens to the concentration of the aqueous copper(II) sulfate during the electrolysis? Explain your reasoning.

Question 7:

Chlorine is made by electrolysis of concentrated aqueous sodium chloride.

The diagram below shows apparatus that can be used to electrolyse concentrated aqueous sodium chloride.



- a) Label the products on the diagram.
- b) Write ionic equations, including state symbols, for the reactions taking place at the anode and the cathode.

Reaction at the anode: Reaction at the cathode:

Question 8:

Sodium metal is extracted from molten sodium chloride by electrolysis.

a)	i)	Write an ionic half-equation, with state symbols, to show the reaction that happens at the anode.
	ii)	Describe a simple test, and its result, that would identify the gas given off at the anode.
b)	Calciu	um chloride is added to the sodium chloride to lower the melting point of the mixture. Explain why lowering the melting point of the mixture makes the process cheaper to run.
	ii)	The molten sodium contains metallic impurities. Name the main metallic impurity that you would expect to find and explain how it forms.
c)	Sodiu	m chloride can also be electrolysed in aqueous solution. Describe the differences in
	molte	roducts of the electrolysis of concentrated aqueous sodium chloride compared to n sodium chloride.

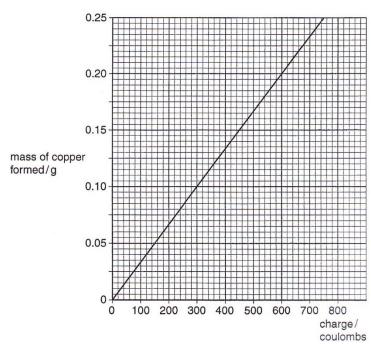
Question 9:

i)

Aqueous copper(II) sulfate is electrolysed using carbon electrodes.

a) Give the formulae of all the ions present in the solution.

.....

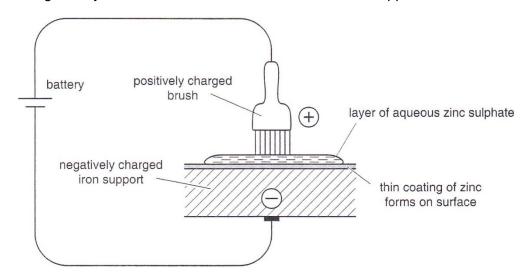

b) A copper coating forms on the cathode, and a gas is evolved at the anode.

Write a half-equation for the formation of copper at the cathode.

- ii) Name the gas formed at the anode and describe a test for this gas.
- c) After some time, the blue colour of the aqueous copper(II) sulfate fades, and the pH of the solution decreases. Explain why these changes take place.

.....

d) A student investigated the relationship between the mass of copper formed and the total charge passed through the solution. This is the graph of the results.


What mass of copper is formed when a charge of 600 coulombs is passed through the solution?

.....

ii)	Use the graph to predict the charge needed to form 1 g of copper, and hence
	predict the charge needed to deposit 1 mole of copper.

Question 10:

A new type of electroplating is known as "brush electroplating". It is used to electroplate zinc onto very large iron supports to be used in buildings. The iron supports are too big to be plated in a normal electrolysis tank. During the process, a metal brush spreads a layer of aqueous zinc sulfate over the iron surface. A battery gives the metal brush a positive charge and gives the iron support a negative charge. A layer of zinc forms on the surface of the iron support.

- a) The surface of the iron acts as a cathode. Zinc ions from the solution form zinc on the surface of the iron. Write an ionic half-equation, with state symbols, for this reaction.
- b) Two different designs of metal brush are available. One type of brush is made from zinc, one type is made from platinum. As the electrolysis takes place, each brush has a different effect on the concentration of zinc ions in the solution.
 - i) What will happen to the concentration of the zinc ions during the electrolysis if the brush is made from platinum?

ii) What will happen to the concentration of the zinc ions during the electrolysis if the brush is made from zinc?

	111)	Platinum brushes are much more expensive than zinc brushes. However, zinc
		brushes need replacing regularly, but platinum brushes do not. Explain why.
c)	would	the process, a worker needs to hold the brush. Which of the following materials be a good choice for the handle of the brush? Give a reason for your answer. chromium copper graphite iron poly(ethene)
		on:
d)		n why iron supports coated with zinc do not rust, even if the zinc coating is damaged.
u)	⊏xpiai	

• Scan the QR Code below for the answers to this assignment.

http://www.chemist.sg/energy_changes/assignment_redox_electrochem_energy_ans.pdf