

	Name: ()
Chem!stry	Class:	
	Date: / /	

Notes on Atomic Structure – Macroconcept: Models

Learning Outcomes:

- By the end of the unit, students should understand the concept of atom.
- Students will demonstrate their understanding of atomic structure by being able to...
- (a) State the relative charges and approximate relative masses of a proton, a neutron and an electron.
- (b) Describe, with the aid of diagrams, the structure of an atom as containing protons and neutrons (nucleons) in the nucleus and electrons arranged in shells (energy levels).
- (c) Define proton (atomic) number and nucleon (mass) number.
- (d) Interpret and use symbols such as ${}_{6}^{12}$ C.
- (e) Define the term isotope.
- (f) Deduce the numbers of protons, neutrons and electrons in atoms and ions given proton and nucleon numbers.
- (g) Draw the electronic configurations of the first twenty elements (hydrogen to calcium).
- (h) Understand that atoms with noble gas electronic configurations are inert.
- (i) Understand that atoms of metallic elements react by losing their valence electrons to form positively charged ions (cations) with a noble gas electronic configuration.
- (j) Understand that atoms of non-metallic elements react by gaining electrons into their valence shell to form negatively charged ions (anions) with a noble gas electronic configuration.
- (k) Understand generalisations about models and how models are used by scientists to visualise and understand complex ideas.

• The concept of *scale*, from the extremely small to the extremely large.

1. What is the definition of *atom*?

.....

2. Atoms are extremely small (see diagram on page 1). Even with the use of modern technology, it is not possible to observe the detailed structure of an individual atom. On what evidence do scientists base their understanding of atomic structure?

.....

- 3. Modern understanding of atomic structure is a conceptual *model*. Ideas about atomic structure may change as new evidence is discovered. What are some generalisations about *models*?
- 5. Label the diagram shown below to summarise the fundamental structure of an atom.

6. Complete the table shown below to summarise the fundamental properties of protons, neutrons and electrons.

Name of Sub Atomic Particle	Particle's Location in Atom	Particle's Relative Charge	Particle's Relative Mass
Proton			
Neutron			
Electron			

7. Explain why atoms are electrically neutral.

.....

- 8. (a) Define the term *atomic number*.
 - (b) Define the term *mass (nucleon) number*.(c) How are the number of neutrons in an atom calculated?
- **9.** Which particle, the proton, neutron or electron, determines which chemical element an atom

belongs to (*i.e.* the number of which particle is unique for each chemical element)?

.....

- 10. How many protons, neutrons and electrons do the atoms of the following elements contain?
 - (a) ${}^{7}_{3}Li$ protons =
 neutrons =
 electrons =

 (b) ${}^{19}_{9}F$ protons =
 neutrons =
 electrons =

 (c) ${}^{23}_{11}Na$ protons =
 neutrons =
 electrons =
- **11. (a)** What is the relationship between an element's position in the Periodic Table and the total number of electrons contained within a single atom of that element?

(b) What is the relationship between an element's position in the Periodic Table and the number of *electron shells* in an atom of that chemical element?

.....

- (c) What is the relationship between an element's position in the Periodic Table and the number of electrons in the *valence shell* of an atom of that chemical element?
- **12.** Based upon its electronic configuration, how can you determine whether an atom belongs to a metallic element or a non-metallic element?

.....

13. In the space provided below, draw the full electronic configuration of (a) an atom of oxygen(b) an atom of aluminium.

(a) Electronic configuration of a single oxygen atom.	(a) Electronic configuration of a single aluminium atom.

14. (a) Define the term isotope.

.....

(b) Complete the table below to show the numbers of each sub-atomic particle present in the three isotopes of carbon; ${}^{12}_{6}$ C, ${}^{13}_{6}$ C and ${}^{14}_{6}$ C.

Isotope of Carbon	Number of Protons	Number of Electrons	Number of Neutrons
¹² ₆ C			
¹³ ₆ C			
¹⁴ ₆ C			

(c) There are two isotopes of the chemical element chlorine. 75% of naturally occurring chlorine is ${}^{35}_{17}Cl$ and 25% of naturally occurring chlorine is ${}^{37}_{17}Cl$. Use this information to explain why the relative atomic mass of chlorine is *not* a whole number.

15. The electronic configurations of helium, neon and argon are given below.

(a) What is unique about the electronic configurations of helium, neon and argon?

.....

(b) How do the unique electronic configurations of helium, neon and argon affect their reactivity?

.....

- 16. Atoms react to lose or gain electrons so that they can obtain the electronic configuration of a Noble gas. Atoms do this to become chemically stable. During a chemical reaction, the number of protons and neutrons in the nuclei of the atoms remains the same.
 - (a) What happens to the charge on a neutral atom if it *gains* electrons to complete its valence electron shell?

.....

(b) What happens to the charge on a neutral atom if it *loses* electrons to complete its valence electron shell?

_

17. The diagram below shows the full electronic configuration of a sodium atom.

With the aid of a diagram, explain how a sodium atom reacts to obtain a noble gas electronic configuration.

18. The diagram below shows the full electronic configuration of a chlorine atom.

With the aid of a diagram, explain how a chlorine atom reacts to obtain a noble gas electronic configuration.

	Aspect of atomic structure:	Yes, I understand	No, I need more help
1.	I understand that Scientists use models to represent and understand things that are complex and / or cannot be observed directly (because they are either extremely small or extremely large).		
2.	I understand that atoms are the building-blocks of all matter; solids, liquids and gases. A knowledge and understanding of atoms helps to explain how the world around us works.		
3.	I understand that atoms are made-up of smaller (sub- atomic) particles called <i>protons</i> , <i>neutrons</i> and <i>electrons</i> .		
4.	I understand that, although atoms, protons, neutrons and electrons are too small to be observed, there is strong experimental evidence to support their existence.		
5.	I can recall the relative masses and charges of protons, neutrons and electrons.		
6.	I am able to draw the basic structure of an atom, clearly showing the locations of the protons, neutrons, electrons and electron shells.		
7.	I can define the terms <i>atomic number</i> and <i>mass number</i> , and I can interpret symbols such as $^{23}_{11}$ Na to state how many protons, neutrons and electrons there are in a particular atom.		
8.	I am able to define the term <i>isotope</i> , and I understand why the relative atomic mass of an element is not always a whole number.		
9.	I understand that atoms of the different chemical elements have different numbers of protons and different numbers of electrons (in different electronic configurations).		
10.	I am able to draw the electronic configurations of the first 20 chemical elements (when given an element's atomic number or allowed to reference the <i>Periodic Table</i>).		
11.	I know that the <i>Noble gases</i> (Group 18) have a complete valence shell, and this makes them chemically stable.		
12.	I understand that <i>metals</i> can obtain the same electronic configurations as Noble gases, and hence become chemically stable, by <i>losing</i> all of their valence electrons and forming positively charged ions (<i>cations</i>).		
13.	I understand that <i>non-metals</i> can obtain the same electronic configurations as Noble gases, and hence become chemically stable, by <i>gaining</i> electrons to complete their valence electron shells and forming negatively charged ions (<i>anions</i>).		

• Scan the QR code below for the answers to this assignment.

http://www.chemist.sg/chemical_bonding/notes_atomic_structure/notes_atomic_structure_ans.pdf

								Gro	dno								
-	2											13	14	15	16	17	18
							-										2
							I										He
				Key			hydrogen 1.0										helium 4.0
e	4		at	omic numbe	er	-						5	9	7	8	6	10
:	Be		atc	omic symb	ō							മ	U	z	0	ш	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
6.9	6.0		relati	ve atomic n	nass							10.8	12.0	14.0	16.0	19.0	20.2
1	12											13	14	15	16	17	18
Na	Mg											Al	Si	۵.	ა	Cl	Ar
sodium	magnesium	с .	4	LC.	ç	7	00	σ	10	<u>,</u>	12	aluminium 27.0	silicon 28.1	phosphorus	sulfur 30.1	chlorine 25 5	argon 30 0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	Ħ	>	ວັ	Mn	Ъе	ပိ	ī	C	Zn	Ga	g	As	Se	Ъ	Ą
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	ي ک	≻	Zr	qN	Мо	Тс	Ru	R	Pd	Ag	ပိ	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	nonex
85.5	87.6	88.9	91.2	92.9	95.9	I	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57-71	72	73	74	75	76	77	78	62	80	81	82	83	84	85	86
cs	Ba	lanthanoids	Ŧ	Та	N	Re	So	Ir	ъ	Au	Hg	Τĩ	Ър	ā	Ъ	At	R
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	I	I	I
87	88	89-103	104	105	106	107	108	109	110	111	112		114		116		
ŗ	Ra	actinoids	ጟ	Db	Sg	Bh	Чs	μţ	ß	Rg	ő		Fl		Ę		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoid	U	La	မီ	ፈ	Nd	Pm	Sm	Еu	Вd	ДD	Dy	£	ш	Tm	٩۲	Lu	
	2	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		138.9	140.1	140.9	144.2	ı	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	
		68	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
antinoide		Ac	Ч	Ра	∍	dN	Pu	Am	G	离	ŭ	Es	Еm	М	No	5	
		actinium	thorium	protactinium	238 O	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
	-	1	0.202	0.102	1 0.002	1	1	I	1	I	1	1	1	1	J	1	

Periodic Table of the Chemical Elements (2017)

Periodic Table