

Chem!stry

Name: ()
Class:	
Date: / /	

Mole Calculations for Reversible Reactions

1.	Nitrosyl chloride,	NOC <i>l</i> ,	decomposes	on heating	according to	the equation	given	below:
-----------	--------------------	----------------	------------	------------	--------------	--------------	-------	--------

$$NOCl(g) \rightleftharpoons NO(g) + \frac{1}{2}Cl_2(g)$$

When 225 cm³ of nitrosyl chloride was placed in a closed container at constant pressure, and heated to a constant temperature, it was found that nitrogen monoxide made up 20% of the equilibrium mixture.

What is the total volume of gases in the equilibrium mixture at the temperature of the reaction?

2. Hydrogen, $H_2(g)$, can be obtained from methane, $CH_4(g)$, by partial oxidation with steam, $H_2O(g)$, as follows:

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

When 100 cm^3 of $\text{CH}_4(g)$ was reacted with 100 cm^3 of $\text{H}_2\text{O}(g)$ in a closed container at constant pressure, and heated to a constant temperature, it was found that carbon monoxide, CO(g), made up 20% of the equilibrium mixture.

Taking the decrease in volume of $CH_4(g)$ to be x cm³, calculate the volume of CO(g) and $H_2(g)$ in the equilibrium mixture.

	CH ₄ (g)	H₂O(g)	CO(g)	H ₂ (g)
Initial volume / cm ³	100	100	0	0
Final volume / cm ³	100 <i>- x</i>	?	?	?

2

• Scan the QR code below to view the answers to this assignment.

http://www.chemist.sg/ammonia_equilibrium/equilibrium_mole_calc_ans.pdf