

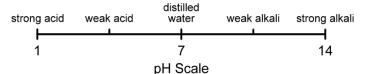
Revision Notes for Secondary Two – Acids, Bases and Salts

1. Acids are chemicals that dissolve in water to produce hydrogen ions as the only positive ion.

Name	Formula	Strong or Weak	Basicity
hydrochloric acid	<u>H</u> C <i>l</i>	strong acid	monobasic
nitric acid	<u>H</u> NO₃	strong acid	monobasic
sulfuric acid	<u>H</u> ₂ SO ₄	strong acid	dibasic
phosphoric acid	<u>H</u> ₃PO₄	weak acid	tribasic
ethanoic acid	CH₃COO <u>H</u>	weak acid	monobasic

*The hydrogen atom(s) that have been underlined represent the hydrogen of the acid that can be replaced by a metal when the acid reacts to form a salt.

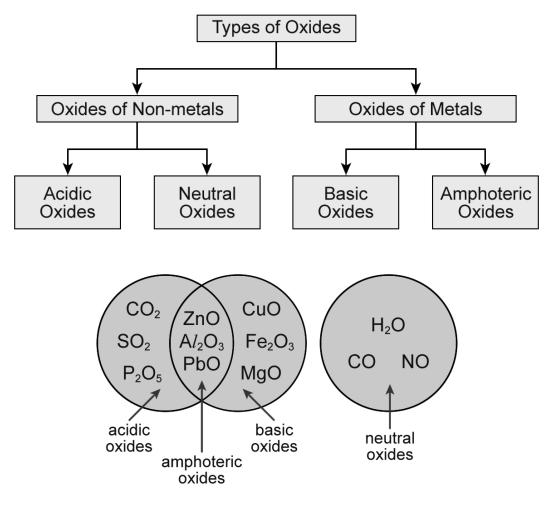
3. a) Strong acids completely / fully ionise when dissolved in water to produce hydrogen ions as the only positive ion.


- **b)** *Weak acids* only partially ionise when dissolved in water to produce hydrogen ions as the only positive ion.
- **4.** a) Monobasic acids produce a maximum number of one hydrogen ion per molecule of acid when dissolved in water (1 H can be replaced by a metal), e.g. HNO₃(l) → H⁺(aq) + NO₃⁻(aq)
 - **b)** *Dibasic* acids produce a maximum number of two hydrogen ions per molecule of acid when dissolved in water (2 H can be replaced by a metal), e.g. $H_2SO_4(l) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$
 - c) *Tribasic* acids produce a maximum number of *three* hydrogen ions per molecule of acid when dissolved in water (3 H can be replaced by a metal), *e.g.* $H_3PO_4(l) \rightarrow 3H^+(aq) + PO_4^{3-}(aq)$
- Bases are usually metal oxides or metal hydroxides, e.g. magnesium oxide (formula MgO), copper(II) oxide (formula CuO), iron (III) oxide (formula Fe₂O₃), sodium hydroxide (formula NaOH) and calcium hydroxide (formula Ca(OH)₂).

If a base can be dissolved in water to form an aqueous solution, then the base can be further referred to as an *alkali*, and the solution that has been formed can be further referred to as an *alkaline solution*. The alkaline solution will contain hydroxide ions, *e.g.*

NaOH(s) \rightarrow Na⁺(aq) + OH⁻(aq) and Ca(OH)₂(s) \rightarrow Ca²⁺(aq) + 2OH⁻(aq)

Ammonia is considered to be a *weak alkali*, e.g. $NH_3(g) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$


6. The pH scale indicates the degree / extent of acidity or alkalinity of a solution.

Acids have pH values less than 7. A relatively strong acid may have a pH value of 1 - 3, while a relatively weak acid may have a pH value of 4 - 6. Distilled (pure) water will have a pH value of exactly 7. Alkalis have pH values greater than 7. A relatively weak alkali may have a pH value of 8 - 11, while a relatively strong alkali may have a pH value of 12 - 14.

- 7. The various reactions of acids and bases typically produce salts as one of the reaction products. A salt is an ionic compound, composed of a positive cation and negative anion. A salt is produced when a metal replaces the hydrogen of an acid.
 - a) acid + metal → salt + hydrogen hydrochloric acid + magnesium → magnesium chloride + hydrogen 2HCl(aq) + Mg(s) → MgCl₂(aq) + H₂(g)
 Note: Metals such as copper, gold, platinum and silver do *not* react directly with acids.
 Note: Test for hydrogen gas – extinguishes a burning splint with a squeaky "pop" sound.
 - b) acid + base \rightarrow salt + water nitric acid + copper(II) oxide \rightarrow copper(II) nitrate + water 2HNO₃(aq) + CuO(s) \rightarrow Cu(NO₃)₂(aq) + H₂O(*l*)
 - c) acid + metal carbonate → salt + water + carbon dioxide
 sulfuric acid + zinc carbonate → zinc sulfate + water + carbon dioxide
 H₂SO₄(aq) + ZnCO₃(s) → ZnSO₄(aq) + H₂O(*l*) + CO₂(g)
 Note: Test for carbon dioxide gas white precipitate when bubbled through limewater.
 - d) ammonium salt + base → salt + water + ammonia
 ammonium chloride + magnesium oxide → magnesium chloride + water + ammonia
 2NH₄Cl(aq) + MgO(s) → MgCl₂(aq) + H₂O(l) + 2NH₃(g)
 Note: Test for ammonia gas turns damp red litmus paper blue.
- **8.** It is important to use the correct valencies in order to obtain the correct formulae when writing balanced chemical equations.
 - Valency = 1: hydrogen, silver, Group 1 elements, Group 17 elements, NH₄⁺, OH⁻, NO₃⁻.
 - Valency = 2: zinc, copper(II), iron(II), Group 2 elements, Group 16 elements, CO_3^{2-} , SO_4^{2-} .
 - Valency = **3**: iron(III), Group 13 elements, Group 15 elements, PO₄³⁻.
 - Valency = 4: Group 14 elements, specifically carbon and silicon.

- **9.** It is important to know the solubility rules in order to write the correct state symbols when writing balanced chemical equations.
 - All sodium salts, potassium salts and ammonium salts are *soluble* in water.
 - All nitrates are soluble in water.
 - All chlorides are *soluble* in water, except AgCl & PbCl₂ which are insoluble.
 - All sulfates are *soluble* in water, except BaSO₄, CaSO₄ & PbSO₄ which are insoluble.
 - All carbonates are insoluble in water, except Na₂CO₃, K₂CO₃ & (NH₄)₂CO₃ which are soluble.
 - All hydroxides are *insoluble* in water, except NaOH, KOH & NH₄OH which are soluble.
- **10.** Oxides of the chemical elements (compounds formed when a chemical element has reacted with oxygen) can be classified as being either *acidic*, *basic*, *neutral* or *amphoteric*.
 - a) Acidic oxides (react with bases) oxides of non-metallic elements, *e.g.* CO₂ and SO₂.
 - **b)** Basic oxides (react with acids) oxides of metallic elements, *e.g.* CuO and MgO.
 - **c)** Neutral oxides (do not react with either acids or bases) *e.g.* carbon monoxide (CO), nitrogen monoxide (NO), dinitrogen monoxide (N₂O) and water (H₂O).
 - d) Amphoteric oxides (react with both acids and bases) *e.g.* aluminium oxide (Al₂O₃), lead(II) oxide (PbO) and zinc oxide (ZnO).

